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Abstract. Using a Green function technique combined with the transfer-matrix method for the
study of surface phenomena, we have investigated a three-dimensional s–d(f) model with modified
surface exchange. The surface layer-magnetization exponent is obtained as βs = 0.781 ± 0.006
(which is different compared with the bulk β = 0.361 ± 0.006) and at the multicritical transition it
is βsm = 0.171 ± 0.016. The critical exponents are consistent with results using the renorm-group
and the Monte Carlo methods.

1. Introduction

It has been a point of interest to see the influence of the surface on the critical behaviour of
ferromagnetic spin systems that exhibit a second-order magnetic phase transition (for a review
see [1]). Though the critical phenomena near the magnetic phase transition temperature have
been intriguing the scientific community for quite a long time, there have been only a few
detailed studies made on the phase transitions that occur in magnetic semi-infinite systems and
magnetic thin films [2–7, 20–22]. In physical systems one expects that the surface exchange
will in general be not the same as in the bulk. Previous works have demonstrated that for
sufficiently enhanced coupling in the surface layer there can be distinct transitions in the
surface and in the bulk. Experiments [8] have shown that in the general case the Curie
temperature of ultra-thin films is lower than the bulk Curie temperature and, as the thickness of
an ultra-thin film decreases, its Curie temperature also decreases while the value obtained by
Curie temperature measurements strongly depends on the surface situation. In some special
cases the Curie temperature of ultra-thin films is higher than the bulk Curie temperature. For
sufficient enhancement of the interaction between the surface spins, an ordered surface phase
is expected to coexist with a disordered bulk phase [9]. It was shown by extensive Monte Carlo
simulations [2] that the magnetization Ms in the surface layer vanishes at the critical point Tc
with an exponent βs different from the exponent β in the bulk. The thermal variation of Ms

expresses a linear temperature dependence in the temperature region near T bc , as observed in
many semi-infinite ferromagnetic systems both theoretically [5, 10] and experimentally [11].
The surface phase transition in anisotropic Heisenberg models was studied by Tsallis and
Chame [20] within a real-space renormalization group, and by Figueiredo and de Moraes
[21] using the Green function formalism and the random-phase approximation. The onset of
surface ordering takes place when the surface magnons become more energetic than the bulk.
In the limit where bulk and surface are both described by a pure Heisenberg model, there is
no long-range surface magnetic order over the paramagnetic bulk, whatever the values of the
exchange couplings are.
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2. The model and the magnetic matrix Green function

The aim of the present paper is to calculate from the s–d model the critical exponent βs for the
surface localized-spin magnetization of semi-infinite ferromagnetic semiconductors (FMSs).

The Hamiltonian of the system is given by:

H = H +M +HE +HME. (1)

HM is the Heisenberg Hamiltonian for the ferromagnetically ordered d electrons,

HM = −1

2

∑
l,δ

Jl,l+δSlSl+δ (2)

where Sl and Sl+δ are the spin operators for the localized spins at sites l and l + δ in the
semi-infinite system, the sum on δ is over nearest neighbours only and Jl,l+δ is the exchange
interaction.

The problem with the simple Heisenberg model in the form (2) is that due to the
Mermin–Wagner theorem [23] there is no solution showing collective magnetic order at finite
temperatures T > 0. To steer clear of this obstacle there are two possibilities. First, one can
apply a decoupling scheme to the Hamiltonian equation (2) which breaks the Mermin–Wagner
theorem. The most common example in the case of the Heisenberg model would be a mean-
field decoupling. For us, the main drawback of the mean-field decoupling is its incapability of
describing critical properties. When choosing a better decoupling approximation to fulfil the
Mermin–Wagner theorem, the original Heisenberg Hamiltonian equation (2) has to be extended
to break the directional symmetry. The most common extensions are the introduction of an
anisotropic exchange interaction −D∑ij S

z
i S
z
j and/or the single-ion anisotropy −D∑i (S

z
i )

2.
For the following we have chosen a single-ion anisotropy leaving us with the total Hamiltonian:

HM = −1

2

∑
l,δ

Jl,l+δSlSl+δ −D
∑
i

(Szi )
2 (3)

where D (D < 0) is the single-ion anisotropy parameter, which is typically smaller by some
orders of magnitude than the Heisenberg exchange interaction, |D| � Jij .

HE represents the usual Hamiltonian of the conduction band electrons,

HE =
∑
l,δ,σ

tl,l+δa
+
lσ al+δ,σ (4)

where tl,l+δ is the hopping integral.
The most important term in (1) is the operator HME which couples the two subsystems

(3) and (4) by an intraatomic exchange interaction Ii ,

HME = −
∑
l

IlSlsl . (5)

The spin operators sl of the conduction electrons at site l can be expressed as s+
l = a+

l+al−,
szl = (a+

l+al+ − a+
l−al−)/2, where a+

lσ and alσ are Fermi creation and annihilation operators at
site l, respectively; σ = ±1 corresponds to spin-up and down states.

To study the magnetic excitations of the system we calculate the Green function,

Gij (t) = 〈〈S+
i (t); S−

j (0)〉〉. (6)

On introducing the two-dimensional Fourier transform Gninj (k‖, ω), one has the following
form,

〈〈S+
i ; S−

j 〉〉ω = 2〈Szi 〉
N

∑
k‖

exp(ik‖(ri − rj ))Gninj (k‖, ω) (7)
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where N is the number of sites in any of the lattice planes, ri and ni represent the position
vectors of site i and the layer index, respectively, and k‖ = (kx, ky) is a two-dimensional wave
vector parallel to the surface. The summation is taken over the Brillouin zone.

We assume for simplificity only nearest-neighbour exchange interactions and take Jij =
Js ; Ii = Is ; tij = ts ; 〈Szi 〉 = 〈Szs 〉; 〈szi 〉 = 〈szs 〉 on the surface layer (i = 1) and Jij = J ; Ii = I ,
tij = t ; 〈Szi 〉 = 〈Sz〉; 〈szi 〉 = 〈sz〉 in the bulk. As a result the equation of motion for the Green
function (7) of the semi-infinite FMS for T � Tc has the following matrix form:

(ω − H)G(k‖, ω) = R (8)

where H, G and R are ∞ × ∞ matrices. H can be expressed as

H =




V −k1 0 0 0 0 . . .

−k U −k 0 0 0 . . .

0 −k Q −k 0 0 . . .

0 0 −k Q −k 0 . . .

...
...

...
...

...
...
. . .




∞×∞
with

k1 = J 〈Szs 〉 k = J 〈Sz〉
V = 1

2〈Szs 〉
(

4Js
N

∑
q

(γ sq − γ sk‖−q)(2〈SzqSz−q〉s + 〈S−
q S

+
q 〉s) +

Is

N2

∑
q,p

(〈S−
q−pa

+
p+aq−〉s

+〈Szq−pa
+
p+aq+〉s + 〈Szq−pa

+
p−aq−〉s) + 2(J + 2D)〈Sz〉〈Szs 〉

)

U = 1

2〈Sz〉
(

4J

N

∑
q

(γq − γk‖−q)(2〈SzqSz−q〉 + 〈S−
q S

+
q 〉) +

I

N2

∑
q,p

(〈S−
p−qa

+
p+aq−〉)

+〈Szq−pa
+
p+aq+〉 − 〈Szq−pa

+
p−aq−〉) + 2(J + 2D)〈Szs 〉〈Sz〉 + 2(J + 4D)〈Sz〉2

)

Q = 1

2〈Sz〉
(

4J

N

∑
q

(γq − γk‖−q)(2〈SzqSz−q〉 + 〈S−
q S

+
q 〉) +

I

N2

∑
q,p

(〈S−
p−qa

+
p+aq−〉)

+〈Szq−pa
+
p+aq+〉 − 〈Szq−pa

+
p−aq−〉) + 4(J + 3D)〈Sz〉2

)
γ (k‖) = 1

2 (cos(kxa) + cos(kya)).

In order to obtain the solutions of the matrix equation (8) we use the transfer-matrix method
[12, 13]. We define two infinite-dimensional column matrices, Gn and Rn with the elements
given by (Gn)m = Gmn and (Rn)m = 2〈Szn〉δmn, so that equation (8) yields

(ω − H)Gn = Rn. (9)

We introduce the two transfer functions:

T1 = G2i+1,m

G2i,m
T2 = G2i,m

G2i−1,m
(i � 1). (10)

Substituting T1 and T2 into one column of (9), the following Green functions can be obtained:

G11 = 1

ω − V + k1T2
(11)

G22 = 1

ω − U +
(
kT1 − k1k

ω−V
) (12)
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G33 = 1

ω −Q +

(
kT2 − k2

ω−U− k1k
ω−V

) (13)

and so on, where

T1 = 1

2k

(
−ω + U ±

√(
ω − U − 4k2

ω − U
ω −Q

))
(14)

T2 = 1

2k

(
−ω +Q±

√(
ω −Q− 4k2

ω −Q
ω − U

))
. (15)

The correlation functions are calculated from the Green function using the spectral theorem.
As is well known, the poles of the Green functions gives the dispersion relation of the

spin waves, therefore the SSW spectrum can be given from equation (11) by the following
expression:

ωs − V (ωs) + k1T2(ωs) = 0 (16)

which has to be numerically calculated. We obtain an equation of the seventh degree. It must
be pointed out, however, that the seven roots obtained from (16) must be checked because
extra expressions have been multiplied. We must make sure that the root does not make the
expressions (ωs − U ), (ωs −Q) etc vanish. As a matter of fact, only two of the seven roots
satisfy these requirements and therefore represent the true SSW spectra, corresponding to the
‘acoustic’ and ‘optical’ branches of FMSs.

The so obtained two solutions for the SSW can be used for the evaluation of the relative
localized-spin magnetization of the surface 〈Szs 〉:

〈Szs 〉 = (S + 0.5) coth[(S + 0.5)βωs] − 0.5 coth(0.5βωs). (17)

However, the surface magnetization involves the SSWs, the bulk magnetization and spin waves,
the surface and bulk conduction-electron magnetization and energy, so that all expressions must
be solved self-consistently.

In order to obtain the conduction-electron magnetization 〈szi 〉 we must define the one-
electron Green function gijσ (E) = 〈〈aiσ ; a+

jσ 〉〉. The equation of motion is given by

[E + 0.5σIi〈Szi 〉]gijσ = δij +
∑
δ

ti,iδgi+δ,jσ (E). (18)

Analogously to the previous calculation of the magnetic Green function (6) we obtain for the
surface conduction-electron energy:

Es = Ns + kT2(Es) (19)

with

Ns = −0.5σIs〈Szs 〉 + tsγ (k‖) (20)

T2 = 1

2k
(Es −Ns ±

√
(Es −Ns)2 − 4k2). (21)

ts = −Ws and t = −W , whereWs andW are the conduction band width on the surface layer
and in the bulk, respectively. Equation (19) can be used for the calculation of the surface
conduction-electron magnetization:

〈szs 〉 = n+ − n−
2

(22)
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where n+ and n− are the numbers of conduction electrons in the spin-up and spin-down bands,
respectively [14]. The expressions (16), (17), (19) and (22) form a closed system of self-
consistent equations, whose solution leads to these four quantities on the surface. So, through
the renormalized conduction-electron energy and the conduction-electron magnetization 〈szs 〉
we take into account the t-dependence of the SSW spectrum (16) and our theoretical results
can be applied to narrow-band FMSs (W � IS) such as CdCr2Se4 as well a to wide-band
FMSs (W � IS) such as EuO.

3. The critical exponent of the surface magnetization

The critical exponent βs describing the order parameter on the surface 〈Szs 〉 is defined as [15]

〈Szs 〉 = A

(
Tc − T
Tc

)βs
for T → T −

c . (23)

βs is independent of the magnitude of the spin, but dependent on the dimensionality
of the lattice. The temperature dependence of 〈Szz 〉 from equation (16) was calculated
numerically using parameters appropriate to the ferromagnetic chalcogenide spinels CdCr2Se4

[16]: J = 0.0001 eV, I = 0.5 eV, t = 0.1 eV, Tc = 132.5 K. The single-ion anisotropy
which plays the mere role of keeping the magnetization at finite temperatures was chosen as
D/J = 0.01. The thermal variation of 〈Szs 〉 [5] expresses the linear temperature dependence in
the temperature region near T bc , as observed in many semi-infinite ferromagnetic systems both
theoretically [10] and experimentally [11]. For Is = 0.2I we obtain that the bulk magnetization
is always greater compared with the surface magnetization, i.e. T bc > T

s
c , whereas for Is = 2I

we get T sc > T
b
c [5]. Previous work [1] has shown that for sufficiently enhanced coupling in

the surface layer Js > Jsm (Js is the surface exchange) there can be distinct transitions in the
surface and in the bulk. At Js = Jsm there is a ‘special’ (multicritical) point where one has the
unusual situation that there is simultaneous criticality of two-dimensional (2D) surface layer
correlations and bulk 3D correlations. We obtain similar effects for the s–d exchange coupling
constant, too. We have calculated βs for a three-dimensional cubic lattice for Js = 0.2J ,
Is = 0.2I and ts = 0.5t in the temperature range 5 × 10−4 < |Tc − T/Tc| < 5 × 10−3 from

ln〈Szs 〉 = lnA + βs ln(1 − T/Tc) (24)

and obtained the following value, which is different compared with the bulk β = 0.361±0.006
[17],

βs = 0.781 ± 0.006 A = 1.706 ± 0.006. (25)

The critical exponent βs = 0.781 is independent of Is/I in the case when Is/I < 1. Then βs
steadily decreases with increasing of Is/I until, at bout Is/I ≈ 2 it is βs = 0.101 ± 0.006, i.e.
it becomes less than the two-dimensional value β(2D) = 0.125. Clearly, this variation of βs
with Is/I is due to crossover associated with the multicritical point at Ism [2]. For Is > Ism
the surface orders at T sc > T

b
c and hence βs < β(2D). The calculations show that T sc > T

b
c at

least for Is/I ≈ 1.2 ± 0.06 with βsm = 0.171 ± 0.016. The obtained values for βs and βsm
are consistent with renorm-group predictions [18, 19] and with the Monte Carlo method [2]
for ferromagnetic systems.

References

[1] Binder K 1984 Phase Transitions and Critical Phenomena vol 8 ed C Domb and J L Lebowitz (New York:
Academic) ch 1

[2] Binder K and Landau D P 1984 Phys. Rev. Lett. 52 318



3980 J M Wesselinowa

[3] Shi L P and Yang W G 1992 J. Phys.: Condens. Matter 4 7997
[4] Mohan Ch V and Kronmueller H 1998 J. Magn. Magn. Mater. 182 287
[5] Wesselinowa J M, Iliew L L and Nolting W 1999 Phys. Status Solidi b 214 165
[6] Irkhin V Yu, Katanin A A and Katsnelson M I 1996 J. Magn. Magn. Mater. 164 66
[7] Pinettes C and Lacroix L 1997 J. Magn. Magn. Mater. 166 59
[8] Liu C and Bader S D 1990 J. Appl. Phys. 67 5758
[9] Mills D L 1971 Phys. Rev. B 3 3887

[10] Kaneyoshi T 1990 J. Magn. Magn. Mater. 89 L1
[11] Paul O, Toscano S, Hirsch W and Landolt M 1990 J. Magn. Magn. Mater. 84 L7
[12] Zhou Y and Lin T 1989 Phys. Lett. A 134 257
[13] Dai S T and Li Z Y 1990 Phys. Lett. A 146 450
[14] Wesselinowa J M 1983 Phys. Status Solidi b 120 584
[15] Stanley H E 1971 Introduction to Phase Transitions and Critical Phenomena (Oxford: Clarendon)
[16] Haas C 1968 Phys. Rev. 168 531
[17] Wesselinowa J M 1984 Phys. Status Solidi b 126 229
[18] Diehl H W and Eisenriegler E 1982 Phys. Rev. Lett. 48 1966
[19] Diehl H W and Dietrich S 1981 Phys. Rev. B 24 2878
[20] Tsallis C and Chame A 1988 J. Phys. Coll. 49 1619
[21] Figueiredo W and de Moraes J N B 1999 Phys. Status Solidi a 173 209
[22] Schiller R and Nolting W 1999 Solid State Commun. 110 121
[23] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133


